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Ahstract-Typical models for AMB actuators consist of a 
static linearized mapping from displacement and current to 
(orce (f ~ -K",x + Kd) and are augmented with actuator 
dynamics (bandwidth and gain) which act to correlate a 
command signal Vc to resulting current: 1(8) = Ga(s)Vc(s). 
In the present work, we show that this model misses a 
number of potentially important features, most notably the 
effect of amplifier bandwidth limitations on the term mapping 
displacement to force (K",) and the related influence of journal 
motion induced back-EMF. In addition, we show how actuator 
eddy currents intnact with the amplifier dynamics and how 
to model the resulting composite system. 

J. INTRODUCTION 

Since the beginning of published literature on active 
magnetic bearings, the standard model for the actuator has 
relied on a static linearized mapping from displacement and 
current to force (f '" -Kxx+K,i) [I]. Later developments 
included amplifier dynamics in order to achieve higher 
fidelity. These dynamics were applied in simple way to 
the existing model: it was assumed that the mapping from 
amplifier command signal to actual current is characterized 
by the SISO transfer function I(s) = G.(s)V,(s) so that 
F(s) = G.(s)K;V,(s) - KxX(s) [2], [3]. 

In the present work, we show that this model misses a 
number of potentially important features, most notably the 
effect of amplifier bandwidth limitations on the term map­
ping displacement to force (Kx) and the related influence 
of journal motion induced back-EMF. In addition, we show 
how actuator eddy currents interact with the amplifier dy­
namics and how to model the resulting composite system. 

The primary product of the paper is a reformulation so 
that 

F", K;G.(s)V, - KxGx(s)X 

in which Ki and Kx are defined in the usual fashion and Go. 
is the transfer function of the power amplifier as measured 
with constant gap. Gx{s) is similar to Go. except that its 
DC gain is 1.0. This fonnulation is developed for a single 
axis AMB and then generalized to an n-axis device. 

In addition, when eddy currents are considered, this fonn 
can be extended as 

F", K,G.,,,(s)V, - KxGx,,,(s)X 

to include the effect of finite lamination thickness. The 
transfer functions Go.,ee and Gx,ee are very similar to 
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Fig. 1. Simple AMB with an opposed pair of stator quadrants. 

the non-eddy current models Go. and Gx but embed the 
transfer function 

RO 
G, = =-=-:........,,, 

RO +c.,fS 

The parameters RO and c are readily computed from 
actuator geometry and material properties. 

Several examples are presented to illustrate the differ­
ences in predicted behavior between the static linearized 
model and this newer model, both with and without eddy 
current effects. In particular, we demonstrate that very stiff 
suspensions will tend to mask these differences but that 
soft suspensions - especially those employed when the 
AMB is used as a test actuator - will tend to emphasized 
these differences, resulting in very substantial error with 
the simpler model. 

II. DYNAMICS WITHOUT EDDY CURRENTS 

Consider a simple single axis AMB actuator with two 
opposed horseshoe magnets as depicted in Figure 1. Each 
magnet has N turns (two coils wired in series, each with 
N/2 turns), pole cross section area Ag , and has its pole 
inclined at an angle cos- 1 'Y to the vertical direction. The 
resistance of each series connected pair of coils is R. For 
such a pair of magnets, 

F = 'YAg (Bi - B~) 
1'0 

(\) 



and (neglecting eddy current effects) This may be written succinctly as 

/JoN . 
B, = 2(90+ (-l'l'Yx/' (2) 

/JoN ,Bb 
B. = -2-G.(s)V, + -2-G.(s)x 

go go 
(12) 

Further, the coil voltages are related to B and I through in which 

dB, 
II; = NAgTt+I,R (3) 

Now, assume that each of the drive amplifiers has the 
control law 

in which Ro ::::::: R and it may reasonably be assumed that 
Gv = o:C I Ro (the constant a: sets the DC transconduc­
tance gain) although either may contain some additional 
filtering aimed at specific closed loop perfonnance. 

Deftne 

Bb '" (B, + B2)/2 

B. '" (B, - B2 )/2 

(Sa) 

(5b) 

so that B, = Bb + B. and B2 = Bb - B. and assume that 
Bb is held constant. Rearrange (2) as 

I, = 2(go + (-I'l'Yx) B, "" 290 B, + (-1') 2,B, x (6) 
/JoN /JoN /JoN 

With this approximation, we can expand (3) as 

11( = NA dB, + 2goR B, + (_I,)2,BbR x 
9 dt /JoN /JoN 

(7) 

and (4) as 

II; = Gvv,,,, - B, + (-I l'YBb-2GJRo90 ( ,x) 
'/JON 90 

(8) 

Equating (7) and (8) produces 

2GTRo90 ( ,x) GVv"", - N B, + (-I l'YBb-
1-'0 90 

(NA 
290R) B . (-I')2,B,R (9) 

gS+ N'+ N x 
/Jo /JO 

Define 

Vb ;: (11"", + 11"",) /2 

and add the two instances of (9) to obtain 

/JoNGv(O) 
Bo = 2goRo (GJ(O) + R/Ro) Yo (10) 

in which it is assumed that Bb and Vb are constant so that 
SBb = O. 

Further, define 

v.: = Vref,l - Vref,2 
,- 2 

and subtract the i = 2 instance of (9) from the i 1 
instance to obtain 

/JONG v V. 
/JoN'Ags + 29oRo(GJ + R/Ro) , 

2,BoRo (GJ + R/Ro) 
+ /JoN2Ags+ 2goRo(Gl + R/Ro) x (11) 

Lo 
/JoN'Ag 

- 2go 
(13) 

G.(s) 
Gv(s) 

-
Los + RoGJ(s) + R 

(14) 

Gx(s) 
Ro(GT(s) + R/Ro) 

- Los + RoGJ(s) + R 
(15) 

Now, changing B coordinates as prescribed by (5), (I) 
produces 

F = , Ag (B~ _ BD = 4,AgBb B. 
/JO /JO 

Substitute (12) into (16) to obtain 

F = 2,A;:oN (G.(S)V, + ::~G.(S)x) 
Define the control current, i, as 

. I, - I2 
1.::-

2
-

so that 

Gv(S) V. 
Los + Ro(G, + R/ Ro ) , 

,BoNAgs 
""2 g-o'( L'-o-s--'+'::'Ro;;:-"( G"'J"'+'---';R'/ Ro"")) x 

(16) 

(\7) 

(18) 

Noting the previous definition of G4 (14), call GB the 
closed loop amplifier transconductance and 

The first term, GB(s)VC , is the term normally included in 
magnetic bearing models. The second term depends on 
the derivative of x: it represents the effect of back-EMF 
induced by rotor motion and is typically not included in 
magnetic bearing models. 

For comparison to (17), solve (19) for V, to obtain 

1 . ,BbNAgs 
V, = G.(s)' + 2go Gv(s)" (20) 

and combine (20) and (17) with definitions (14) and (15) 
to produce (after some algebra), 

2,AgBbN . 4Ag,'B: (21) F= t+ x 
go /JOgo 

Obviously. (21) is just the usual Taylor's series expansion 
of (1) in terms of the perturbation current, i ;: (I, - I,) /2, 
and the rotor displacement, x. Thus, assuming the fonn 

F= Kii-Ka:x 



we obtain 

and 

TABLE I 

EXAMPLE THRUST BEARING PARAMETERS 

inner radius, inner pole piece 
outer radius, inner pole piece 
iMer fadius, outer pole piece 
outer radius, OUtef pole piece 

nominal air gap, 90 
bias current, 1& 

coil turns, N 
coil resistance, R 

K;r= 

51.69 mm 
68.32 mm 
90.83 mm 
101.2 mm 
l.Omm 
7 amps 
145 
0.232 n 

so that (17) becomes 

F = K,Ga(s)V, - K.G.(s)x (22) I 

What is important about (22) is that, including journal 
motion induced back-EMF terms as in (19) and amplifier 
dynamics as in (4) modifies both the actuator gain term 
(coefficient of i in (21») and the open-loop stiffness tenn 
(coefficient of x in (21)) imposing bandwidth limits to both 
tenns. Further, by making Gv and G I different, it becomes 
possible to maintain a high bandwidth product Ki G a while 
reducing the bandwidth of K;r,G;r, substantially: this is the 
essential approach in flUX feedback amplifiers. The penalty 
is that G (J. becomes sensitive at lower frequencies to R, 

. which can vary substantially with temperature. 

A. Example: thrust bearing 

To examine the effect of this dynamic limiting of K%. 
consider a thrust bearing with the dimensions and parame­
ters indicated in Table I. The amplifier transfer function 
G - 2066+678 while G - 1 5 206,,+578 to give a DC 

I - 0.232" V -. .. 
transconductance of 1.5 amps/volt. Because G I is so large 
(a proportional gain of 887), the difference between Ga 

and Gr. is essentially just a matter of gain, as indicated in 
Figure 2. 

Clearly, the bandwidth of the Kr. effect is the same as 
that of the Ki effect. This connection arises because the 
Gland Gv differ only by a constant ratio. To get a notion 
of when this dynamic is important, consider (19). lfthe bus 
voltage driving the amplifier is 160 volts, then we begin to 
be concerned about amplifier saturation when the back-emf 
tenn approaches this value. That is, when 

I-YB,NAg sxl '" 160 
290G v 

or, more conveniently, when 

I x I I 320Gv I 
90 '" -yB,N Ags 

Since x < go. we are interested in frequencies where the 
tenn to the right is less than 1.0: at lower frequencies, the 

:1 =:l 
l1i:o"'·'~~-."'·'----~,,'-' ---.,", -~-.""----',,, 

_G,(s) 

G/s) 

10' 10' 10' 
Frequency. Hz 

10' 

Fig. 2. Gain plots of 0 ... (8). and G2;(S) fOf the thrust example without 
eddy currents. 

---_OJ" 

Fig. 3. Thrust bearing compensator Bode plot. 

voltage problem cannot arise because the motions cannot 
be large enough. For the present case, the frequency beyond 
which this condition may be met is readily found to be 52 
kHz. It is vet)' unlikely that this thrust bearing will move 

. with an amplitude of ±1.0 mm at a frequency as high as 
52 kHz! 

To examine the implications for stability, assume that the 
thrust bearing must control a mass of 34 kG and measures 
this mass with a sensor with sensitivity of 15000 volts/m. 
A PJD controller is introduced with the transfer function 

G (8) _ 0.00096s2 + 0.88 + 1 
, - 8 X 10-8 s3 + 0.00064s2 + s 

whose Bode plot is provided in Figure 3. With this com­
pensator, the plant including bandwidth limiting on the 
Kz tenn is stable with eigenvalues of -5500, -3800, 
-2493, -1062, -44.1 ± 719j, and -2.05. If the same 
system is modeled without bandwidth limiting on the K% 
term, the resulting closed loop system is not stable and has 
eigenvalues of -5543, -3846, -1126, 7.35 ± 696, -2.05. 

Not surprisingly, bandwidth limiting the K z term im· 
proves the stability of the system (hence the interest in 
flux feedback). For systems of this sort with relatively 



minor influence of this bandwidth limitation, it is probably 
conservative to ignore the effect, although it is not costly 
to include it. 

III. DYNAMICS WITH EDDY CURRENTS 

To consider the effect of eddy currents, we appeal to 
the developments in [4]. In that work, it is shown that 
the relationship between coil current, gap flux, and gap 
variation is closely approximated by 

N 89 2Nlb 1 
"'.(s) = no + C,,;/,(s) 8x !'oA no no + cv'SX.(s) 

P 9 (23) 

in which the subscript p indicates small perturbations about 
an equilibrium point. The coefficient c characterizes the 
eddy current production in the material: large c implies high 
bulk conductivity. The constant nominal circuit reluctance, 
'R. 0 , is defined for our purposes as 

n0 = 290 
- !'oAg 

Thus, we may rearrange (23) as 

B,(s) = Jl.<JNh 1 (l,(S) _ (_1 )'-YX(s») (24) 
290 1 + c'v'S Ib 90 

in which 
I tLoAg c =--c 

290 

Following the previous development hut using 
this modified relationship betWeen flux, current, and 
displacement, it is fairly direct to obtain the modified 
model 

F = K,G.(s;c'}Vc - K.G.(s, c')x (25) 

G.(s; c' ) " Gv (26) 
Los + (1 + d v'S) (G 1 R., + R) 

G( ') (R+GIR.,) (27) 
• S;C = Los+ (1+dv'S)(G1R.,+R) 

A. Example 

To illustrate the alteration this produces, consider the 
previous example thrust bearing. Here, the parameter c 
has been estimated from experimental work as c ~ 
O.015Aj Tm' y'SeC. For comparison, the gain and phase 
of the transfer functions Ga(s) and G.(s;c') are plotted 
in Figure 4. The functions G.(s) and G.(s; c') have the 
same character. 

It is particularly interesting to note that both the non­
eddy current model and that including the eddy currents 
reach a phase of _450 at the same frequency (about 400 
Hz). 

OF=~~---=~----------~~ 

1-45 --~----:~ 
~ with eddy currenls l ~~ 
Q. - without ~ddy curreotsl ',,- - _ 

-90 
10·' 10' 10' 102 103 

Frequency, Hz 
10' 10' 

Fig. 4. Bode diagrams of Go. (s) (no eddy currents in the model) and 
Go. (s, c') (includes eddy currents in the model). 

IV. EXTENSION TO GENERALIZED ACTUATORS 

For a general actuator, the relationship between the 
actuator gap flux density distribution II and force in any 
given direction iJ is [5] 

F. " E. . Ii = 2~o Q. T A.Q. (28) 

in which 

A. = diaglAv,') 

and 

that is, the diagonal elements of All are the dot product of 
the outward normal to each pole's area and the direction 
y in which the force is measured. The magnitude of At is 
the gap area of the ith pole face. 

The vector of gap fluxes J2. is related to the coil currents 
I and rotor position :£ by 

(29) 

By Faraday's and Ohm's laws, the voltages across the coils 
are 

V=N!:..B+Rl - dt- -

Differentiating (29) produces 

n(~!:..B -2-- dR Bd'f, = N dI 
dt- + 8 'f, - dt dt 

so that, assuming 'R. -I exists, 

!:..B = n-1 (Ndl. _ t dRBd'f') 
dt- dt i _ l:£i - dt 

and, finally, 

V = Nn- ' (N dI _ -2-- dR
B d'f,) + RI 

- dt ~ x· - dt -i _I _1 

(30) 

(31) 

(32) 



TYPically, the coils are wound in series sets so that 

.!!:, =CT .!!: 
which dictates that the coil currents in the coils of these 
series sets are given by 

I=CI - -, 
so that the coil voltages for the series sets are governed by 

V =CTNR- 1 (Nc dl' _ ~dRBd'£i) +CTRCI 
-oS dt L- x. - dt _9 

i=l _t . 

Define 
L," CT NR-1NClx~x __ 0 

Q=!2J 
and 

R," CTRC 

to obtain the simpler statement 

dI. T d,£ .!!:, =L'dt -C NQ dt +R,l. 

Now, assume a control law for the amplifier array: 

.!!:, = Gv(s).!!:, - R.,oGI(s)l, 

so that 

(L.s + R, + R"oGI)l. = Gv.!!:, + CT NQs,£ 

or, 

(33) 

(34) 

I. = (L,s + R, + R"OGI)-l (Gv .!!:, + CT NQs,£) 

which may be written as 

I. = Ga(s) (.!!:, + G;;lCT NQs,£) (35) 

in which 

Ga(s) " (L,s + R, + R"oGI(SW1GV(s) 

Referring back to (28), 

1 T 8 ( ) F. "" -Jl. A y8TJl. l, -l"o 
J1.o -s 

Define 

1 T 8 + - Jl. Au -8 Jl. ('£ - 'f.c) (36) 
J.lo ;Q 

2.Jl.T Au (R-1NC (l, -I.,o) - Q ('£ - '£0)) 
1'0 

K ,,2.BT A R-1NC t,y _ ..-..y and 
_ 1 T 

K x,. = -Jl. A.Q 
1'0 1'0 

so that 

Fy "" Ki,y (l, -I.,o) - K x,. ('£ - 'f.c) (37) 

As previously, substitute (35) into (37) to obtain 

v., f 

x 

Fig. 5. Schematic view of the actuator/amplifier/rotor interaction. Eddy 
currents are not indicated 

V. SYSTEM OBSERVATIONS 

One useful feature of this expanded view of the dynamics 
of the amplifier/actuator interaction is that it makes acces­
sible some important signals. An obvious way. to model 
the interaction is indicated in Figure 5. With this structure, 
signals like coil voltage (V) and perturbation flux (q,) 
become accessible as part of the model signal set. These 
signals can be very useful in evaluating system performance 
- where voltage should be compared to amplifier supply 
voltage and flux (Plus bias flux) should be compared to 
saturation levels for the actuator. This is especially valuable 
when synthesizing controllers using methods like 'HOC! or p. 
where cost functions should explicitly weight these signals. 

VI. CONCLUSIONS 

The dynamic interaction of the actuator, amplifier, and 
rotor motion of an active magnetic bearing were reformu­
lated to properly account for the effects of finite amplifier 
bandwidth on not only the actuator's effective gain but 
also its negative stiffness. Although the effect for practical 
bearings is not strong, the formulation does offer higher 
fidelity than existing models and has advantages in terms 
of available signals when used in some control synthesis 
frameworks. Further, the effect of eddy currents on these 
properties was also explored using a simple fractional 
derivative model which has been shown to exhibit high 
fidelity. Extension to· generalized actuators was developed 
leading to a matrix formulation with a form similar to the 
forgoing scalar result. 
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