
IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 15, NO. 1, FEBRUARY 2010 59

Modeling of Nonlaminated Electromagnetic
Suspension Systems

Lei Zhu and Carl R. Knospe, Senior Member, IEEE

Abstract—Eddy currents induced within nonlaminated electro-
magnetic actuators by time-varying magnetic fields have a strong
effect on the dynamics and control of electromagnetic suspension
systems. This paper examines the modeling of these suspension
systems and resolves two important problems: 1) the effect of time-
varying flotor position on electromagnetic force production and
2) the proper manner in which to model voltage-mode operation of
the suspension. The models developed are explicit functions of ac-
tuator material and geometric properties. The investigation focuses
on axisymmetric cylindrical electromagnetic actuators. Similar re-
sults are provided for nonlaminated actuators with C-core stators.
Experimental results are presented that demonstrate the accuracy
of the modeling approach.

Index Terms—Active magnetic bearings, electromagnetic actu-
ators, electromagnetic suspension, fractional-order systems.

I. INTRODUCTION

NONCONTACT electromagnetic suspension systems have
been studied for a variety of industrial and scientific ap-

plications, including rotating machinery (i.e., active magnetic
bearings) [1], [2], metal conveyance [3], metal coating pro-
cesses [4], photolithography [5], and tool servo systems [6].
Typically, the electromagnet’s stator and the flotor (the levitated
part) are composed of laminations so as to reduce eddy currents
within the ferromagnetic material. As Faraday’s law dictates,
eddy currents will be induced in any conductor in response to a
changing magnetic field. These eddy currents, in turn, generate
a magnetic field that opposes the change in externally applied
field. For electromagnetic suspension systems, the effect of eddy
currents is a reduction in the time-varying component of the
actuator force as well as a phase lag between actuator coil cur-
rent and the force produced. The use of laminated construction,
however, causes these effects to be negligible within the typical
bandwidth of electromagnetic suspension systems (2–5 kHz). In
some applications, however, laminated construction is contra-
dictory to the magnetic suspension’s purpose (e.g., in sheet metal
conveyance) or is precluded due to cost or strength concerns.
An important example of the later is thrust magnetic bearings in
rotating machinery, which rarely contain laminations. In such
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applications, eddy currents will have profound effects upon the
behavior of the electromagnetic suspension system and must be
considered in system modeling and controller design.

The dynamics of nonlaminated magnetic actuators was first
studied by Zmood et al. [7], who examined a nonlaminated
C-core electromagnet having a large ratio of pole width to
height. Zmood et al. employed a one-term expansion of the
model of Stoll [8] and derived a first-order analytic model.
Feeley [9] also examined C-core actuators but used a 2-D eddy
current formulation (also from Stoll). After an ad hoc approxi-
mation, a fractional-order transfer function model between per-
turbation current and force was obtained. In both papers, the
authors assumed that the distribution of flux density in a cross
section of air gap was identical to that in a cross section of the
pole iron. As was shown in [10], this is not accurate in har-
monic analysis due to the effects of eddy currents. Kucera and
Ahrens [11] investigated the dynamics of a nonlaminated cylin-
drical magnetic actuator. In developing their analytic model, it
was assumed that the air gap flux density was uniformly dis-
tributed and was independent of the frequency of the harmonic
field. Furthermore, a parameter in this model must be deter-
mined from experimentation, as it does not correspond to any
geometric or material property of the actuator.

In [10] and [12], the authors presented analytic results
that describe the current–force relationship for cylindrical and
C-core stators, respectively. The modeling approach used made
no assumption regarding the distribution of field within the air
gap and captured the effects of changing flux distribution with
harmonic frequency. The analytic models obtained were ex-
plicit functions of actuator material and geometric properties.
The analytical models obtained, however, were quite involved,
consisting of transfer functions containing Bessel, hyperbolic
tangent, hyperbolic cosine, or other infinite sums in fractional
powers of the Laplace transform variable s. In [10] and [12], the
authors reduced these models to simple fractional-order trans-
fer functions in which all coefficients were explicit function of
actuator material and geometric properties.

Two fundamental modeling issues of nonlaminated electro-
magnetic actuation have so far not been examined in any of the
previous investigations: 1) the manner in which dynamic vari-
ations in flotor position (i.e., gap variations) affects the force
applied to the flotor and 2) the relationship between voltage
applied to the electromagnet’s coil and the force induced upon
the flotor. Resolution of these issues is essential to developing
a complete model of nonlaminated electromagnetic suspension
systems. In this paper, a solution settling these outstanding is-
sues is provided. Furthermore, this solution is written explicitly
in terms of actuator material and geometric properties. As a
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Fig. 1. Electromagnetic stator (C-core) acting upon a flotor with air gap g.

result, the model allows the characterization of configurations
for which the effect of eddy currents is substantial. Largely, we
will focus our investigation on nonlaminated cylindrical actua-
tors. Similar results may be straightforwardly derived for other
actuator configurations. Experimental results are provided that
confirm the theory presented.

II. PRELIMINARIES

A. Laminated Electromagnetic Suspensions

Our examination begins by reviewing electromagnetic sus-
pension systems with laminated ferromagnetic components and
amplifiers operating in current mode. Consider a single lami-
nated electromagnetic stator acting upon a laminated flotor, as
depicted in Fig. 1. The relationship between coil current i and
force applied f is (approximately) given by

f = β
N 2i2

g2 (1)

where N and g are the number of coil turns and the gap between
flotor and stator, respectively, and β is a constant dependent
upon actuator geometry and size. As the actuator can only pull
upon the flotor, to achieve a stable suspension, an opposing
force must be provided by some other means, for example, by
another actuator or by gravity acting upon the flotor. Thus, in
equilibrium at a desired flotor position (gap length g0), a bias
force f0 and current i0 must be employed, where these quantities
are related by

f0 = β
N 2i20
g2

0
.

Linearization of (1) about this equilibrium yields

fp = Kiip + Kggp (2)

where fp , ip , and gp are variations in force, current, and gap
from operating point values (f0 , i0 , g0)

fp = f − f0 ip = i − i0 gp = g − g0 (3)

and the coefficients are given by

Ki =
∂f

∂i

∣∣∣∣ g=g0
i=i0

> 0 Kg =
∂f

∂g

∣∣∣∣ g=g0
i=i0

< 0. (4)

Variable ip is commonly referred to as the perturbation cur-
rent. We note that the actuator force f is directed opposite the
positive direction for gap perturbation gp . We will choose the
positive direction for flotor displacement x to be the same as
the positive direction for actuator force f. Thus, flotor displace-
ment will be equal to the negative of gap perturbation, i.e.,
x = −gp . (This choice of variables and axes is common in the
literature.) The flotor displacement will be determined by the
actuator force and the flotor compliance H(s) via the relationship

X (s) = H (s) Fp(s) (5)

where Fp(s) and X(s) are Laplace transforms of signals fp and
x. Define

Kx =
∂f

∂x

∣∣∣∣ g=g0
i=i0

= −Kg .

As x = −gp , (2) may be rewritten after Laplace transformation
as

Fp(s) = KiIp(s) + KxX (s) (6)

where Ip(s) is the Laplace transform of the perturbation cur-
rent, Ip(s) = L {ip(t)}. Equations (5) and (6) form the conven-
tionally used model of a laminated electromagnetic suspension
system (no eddy currents) operated in current mode.

B. Approach to the Nonlaminated Problem

For actuators composed partly or entirely of solid (i.e., non-
laminated) ferromagnetic components, the model given in (6) is
not accurate in practice due to the effect of eddy currents within
the solid components. In [10], the authors developed an ana-
lytical model for nonlaminated cylindrical magnetic actuators
that expressed the relationship between perturbation current and
perturbation force when gap variation was negligible. We will
recap the solution method and results here as a precursor to the
next section.

The actuator geometry considered first is axisymmetric, as
is the flux distribution inside the actuator. The actuator and
its cross section are shown in Fig. 2 with all the dimensional
notations used throughout this paper. A cylindrical coordinate
system (r, ϕ, z) is employed. Hysteresis, magnetic saturation,
and flux fringing are beyond the scope of this paper; only lin-
ear isotropic materials are considered. We assume that both the
stator and flotor are not laminated, and that they have equal
electrical conductivity, denoted by σ, and equal relative perme-
ability, denoted by µr .

Our approach to analysis, like that in [10], considers the
problem as several 1-D problems linked together via a magnetic
circuit framework. The actuator geometry is divided into six
elements, as illustrated in Fig. 3. This division is based on the
direction of flux lines observed in finite-element analysis of the
actuator; a detailed discussion may be found in [10]. Elements 1
and 3 consist of thin sections of the iron and the corresponding
air gaps between the stator and flotor. Flux in these elements
is radially directed in the transition regions of the iron and is
parallel to the z-axis in the air gap. In elements 2 and 5, the
flux is assumed to be parallel to the radial direction, while in
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Fig. 2. Exploded view and cross section of a nonlaminated electromagnetic
actuator.

Fig. 3. Six elements used in analysis. The z-axis is the line of circular
symmetry.

elements 4 and 6, it is parallel to the z-axis. In [10], the ef-
fective reluctance of each of these elements was derived from
formulating and solving ordinary differential equations govern-
ing the field strength, determining the flux density and effective
permeability, and integrating.

III. CURRENT-MODE MODEL WITH TIME-VARYING

DISPLACEMENT

A. Model of Elements With Time-Varying Air Gaps

We now consider modeling elements 1 and 3 when the flotor
position, and hence gap length, is time-varying. This is treated
as a time-varying perturbation gp added to the nominal gap g0 .
In this case, the flux within the actuator may be considered to
consist of two parts: a bias flux and a perturbation flux. The
bias flux distribution will typically display nearly uniform flux
density along both the stator and flotor surfaces and within the
air gap (see [10] for details) while the distribution of the per-
turbation flux will be similar to that considered for the varying
field in [10], spatially nonuniform with this distribution depen-
dent on the frequency of variation. Assuming that the iron may
be reasonably approximated as possessing a linear magnetiza-
tion curve with relative permeability µr , superposition of the
time-varying and constant flux densities may be employed in
analysis.

We introduce a reluctance network, shown in Fig. 4, to model
element 1. This consists of nodes in the flotor and stator with

Fig. 4. Reluctance network for element 1.

flux paths directed radially in the iron and parallel to the z-axis
in the air gap. The effective reluctances of the paths in the iron
from a node at radius r to nodes at radius r − ε and r + ε are,
respectively, given by

R1ε =
εα

2π (r − (ε/2)) µrµ0
R2ε =

εα

2π (r + (ε/2)) µrµ0
(7)

where α =
√

sσµrµ0 . These reluctances account for the
frequency-dependent nature of axial thickness of the iron paths
[10].

We now turn our attention to modeling the air gap paths in
the reluctance network. Consider a small annular section of
inner pole’s air gap at radius r and with radial thickness ε. The
time-varying reluctance of this section may be expressed as

Rgε =
g0 + gp(t)
2πrεµ0

(8a)

where µ0 is the permeability of free space. Note that the time
dependence of the perturbation term is explicitly indicated (t).
Define the nominal reluctance of this gap section as

Rn
gε =

g0

2πrεµ0
. (8b)

Assuming that gp(t) is small in comparison to the nominal
value g0 , the flux passing through reluctance Rgε at any time t,
is

φε(r, t) =
fst(r, t) − ff l(r, t)

Rgε

≈ fst(r, t) − ff l(r, t)
Rn

gε

(
1 − gp(t)

g0

)
(9)

where ff l(r, t) and fst(r, t) are the magnetomotive forces on the
surfaces of the flotor and stator, respectively. These quantities
may be considered to consist of bias and perturbation terms;
hence,

ff l(r, t) = fb
f l(r) + fp

f l(r, t) (10a)

fst(r, t) = fb
st(r) + fp

st(r, t). (10b)

Substituting (8) into (9) yields

φε(r, t) =
1

Rn
gε

[
fb

st(r) − fb
f l(r)

]

− 1
Rn

gε

[
fb

st(r) − fb
f l(r)

] gp(t)
g0
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+
1

Rn
gε

[
fp

st(r, t) − fp
f l(r, t)

]

− 1
Rn

gε

[
fp

st(r, t) − fp
f l(r, t)

] gp(t)
g0

. (11)

We will assume that magnetomotive perturbation terms are
small in comparison to the nominal values and so neglect the
higher order terms in (11). The flux may be separated into time-
invariant (bias, φb

ε ) and time-varying (perturbation, φp
ε (r, t))

components

φε(r, t) = φb
ε(r) + φp

ε (r, t) (12a)

φb
ε(r) =

1
Rn

gε

[
fb

st(r) − fb
f l(r)

]
(12b)

φp
ε (r, t) = − 1

Rn
gε

[
fb

st(r) − fb
f l(r)

] gp(t)
gn

+
1

Rn
gε

[
fp

st(r, t) − fp
f l(r, t)

]
. (12c)

To simplify analysis, we assume a uniform bias flux distribu-
tion in the gaps. (While generally quite accurate, this assumption
is not necessary for the overall approach.) In this case, the bias
magnetomotive forces are related by

fb
st(r) − fb

f l(r) =
Ni0R

0
1

R0 (13)

where R0
1 is the static reluctance of element 1 (with fixed air gap

g0), R0 is the static reluctance of the entire actuator flux path

R0 =
6∑

k=1

R0
k

and R0
k is the static reluctance of element k. Combining (12)

and (13) yields

φb
ε =

1
Rn

gε

Ni0R
0
1

R0 (14a)

φp
ε (r, t) = − 1

Rn
gε

Ni0R
0
1

R0

gp(t)
g0

+
1

Rn
gε

[
fp

st(r, t) − fp
f l(r, t)

]
. (14b)

After Laplace transformation (L), (14b) becomes

φp
ε (r, s) = L (φp

ε (r, t))

= − 1
Rn

gε

Ni0R
0
1

R0

gp(s)
g0

+
1

Rn
gε

[
Fp

st(r, s) − Fp
f l(r, s)

]
. (14c)

Conservation of flux for the node at radius r provides the
equation

φp
ε (r, s)+

Fp
st(r, s)−Fp

st(r − ε, s)
R1ε

=
Fp

st(r + ε, s) − Fp
st(r, s)

R2ε
.

(15)

Due to the symmetry of the reluctance network, we have

Fp
f l(r, s) = Fp

1 (s) − Fp
st(r, s). (16)

Substituting (14c) and (16) into (15) yields

Fp
st(r + ε, s) − Fp

st(r, s)
R2ε

=
Fp

st(r, s) − Fp
st(r − ε, s)

R1ε
+

2Fp
st(r, s)
Rn

gε

− Fp
1 (s)
Rn

gε

− 1
Rn

gε

Ni0R
0
1

R0

gp(s)
g0

. (17)

Taking the limit of (17) as ε → 0 yields the ordinary differ-
ential equation

d2Fp
st(r, s)
dr2 +

1
r

dF p
st(r, s)
dr

− α2
1F

p
st(r, s)

= −α2
1

2
Fp

1 (s) − α2
1

2
Ni0R

0
1

R0

gp(s)
g0

(18)

where α2
1 = 2α/µrg0 . From the analysis in [10], the solution to

(18) is given by

Fp
st(r, s) =

Fp(s)
2

+
1
2

Ni0R
0
1

R0

gp(s)
g0

+
(

Fp
1 (s)
2

− 1
2

Ni0R
0
1

R0

gp(s)
g0

)
I0(α1r)
I0(α1r1)

(19a)

where I0(·) is the zero-order modified Bessel function of the
first kind. From (16) and (19a), we obtain

Fp
f l(r, s) =

Fp(s)
2

− 1
2

Ni0R
0
1

R0

gp(s)
g0

−
(

Fp
1 (s)
2

− 1
2

Ni0R
0
1

R0

gp(s)
g0

)
I0(α1r)
I0(α1r1)

. (19b)

Substituting (19) into (14c) yields the perturbation flux
through the air gap at radius r

φp
ε (r, s) =

1
Rn

gε

(
Fp

1 (s) − Ni0R
0
1

R0

gp(s)
g0

)
I0(α1r)
I0(α1r1)

. (20)

The perturbation flux through the entire inner pole air gap
may then be found via integration

φp(s) =
∫ r1

0
φp

ε (r, s)dr

=
2πµ0r1I1(α1r1)
g0α1I0(α1r1)

(
Fp

1 (s) − Ni0R
0
1

R0

gp(s)
g0

)

=
1

R1

(
Fp

1 (s) − Ni0R
0
1

R0

gp(s)
g0

)
(21)

where R1 is the effective reluctance of element 1 with nominal
air gap g0

R1 =
g0α1I0(α1r1)

2πµ0r1I1(α1r1)

and I1(·) is the first-order modified Bessel function of the first
kind.
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Using this approach for element 3, a similar relationship can
be derived

φp(s) =
1

R3

(
Fp

3 (s) − Ni0R
0
3

R0

gp(s)
g0

)
(22)

where R3 is the effective reluctance of element 3 with nominal
air gap g0 and Fp

3 (s) is the perturbation magnetomotive force
across this element. The effective reluctance is given by

R3=
g0

2πr2µ0

α1 [I0 (α1r2) K1 (α1r3) +K0 (α1r2) I1 (α1r3)]
K1 (α1r2) I1 (α1r3)−I1 (α1r2) K1 (α1r3)

where K0(·) and K1(·) are the zero-order and first-order mod-
ified Bessel functions of the second kind.

Both (21) and (22) may be rewritten in the form

Fp
k (s) = Rkφp(s) +

Ni0R
0
k

R0

gp(s)
g0

, k = 1, 3. (23)

B. Actuator Electromagnetic Model

We now turn our attention to those elements that do not in-
clude air gaps (elements 2, 4, 5, and 6). The results found in [10]
need no modification for the purposes of our current investiga-
tion. For each of these elements, the perturbation magnetomotive
force across the element Fp

k (s) is related to the perturbation flux
through it by an equation of the form

Fp
k (s) = Rkφp(s), k = 2, 4, 5, 6 (24)

where the reluctances Rk are summarized in Table I. The mag-
netomotive force across each element consists of a bias term
and a perturbation term, expressed in the time domain as

fk (t) = fb
k + fp

k (t) (25)

where the bias terms are constant. Applying Ampere’s law to the
magnetic circuit composed of the six elements in series yields

6∑
k=1

fk (t) = Ni(t). (26a)

For the static bias field, this may be reduced to

6∑
k=1

fb
k = Ni0 (26b)

and, therefore, the perturbation terms are governed by

6∑
i=1

fp
i (t) = Nip(t)

or, after Laplace transformation,

6∑
i=1

Fp
i (s) = NIp(s). (27)

Substituting (23) and (24) into (27) yields

φp(s)
6∑

k=1

Rk +
Ni0R

0
1

R0

gp(s)
g0

+
Ni0R

0
3

R0

gp(s)
g0

= NIp(s).

(28)

Noting that R0
1 = g0/µ0A1 and R0

3 = g0/µ0A3 , where A1
and A3 are the cross-sectional areas of the inner and outer poles,
respectively, the perturbation flux may be found

φp(s) =
N∑6

k=1 Rk

Ip(s)

− 1
µ0

(
1

A1
+

1
A3

)
Ni0
R0

1∑6
k=1 Rk

gp(s). (29)

With the air-gap flux assumed to be parallel to the z-axis, the
mechanical force applied to the flotor may be determined using
Maxwell stress tensor

f(t) =
1

2µ0

∮
S

B2(r, t)dA

=
1

2µ0

∮
S

[
B2

0 (r) + 2B0 (r) Bp (r, t) + B2
p (r, t)

]
2πr dr

(30)

where B, B0 , and Bp are the total, bias, and perturbation flux
densities in the air gap, respectively, and S is a surface between
the flotor and stator. Assuming that the perturbation flux density
is small in comparison to the bias flux density, the time-varying
component of mechanical force may be found

fp(t) =
1
µ0

∮
S

B0 (r) Bp (r, t) 2πr dr

=
1
µ0

∮
S1

(
φ0

A1

)
Bp (r, t) 2πr dr

+
1
µ0

∮
S3

(
φ0

A3

)
Bp (r, t) 2πr dr (31)

where S1 and S3 are projections of the inner pole face and outer
pole face on surface S. We note that∮

S1

Bp (r, t) 2πr dr =
∮

S3

Bp (r, t) 2πr dr = φp (t) . (32)

Therefore, the total mechanical force is given by

fp(t) =
1
µ0

(
1

A1
+

1
A3

)
φ0φp(t). (33)

The bias flux φ0 may be found via

φ0 =
Ni0
R0 (34)

where R0 is the total static reluctance of the flux circuit. Sub-
stitution of (34) into (33) and Laplace transformation yields the
perturbation force in terms of the perturbation flux

Fp (s) = Kφφp (s) (35)

where

Kφ =
1
µ0

(
1

A1
+

1
A3

)
Ni0
R0 . (36)

We note that Kφ also appears in (29), which may be rewritten
as

φp(s) =
N∑6

k=1 Rk

Ip(s) − Kφ
1∑6

k=1 Rk

gp(s). (37)
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TABLE I
EFFECTIVE RELUCTANCES OF THE ELEMENTS AND THEIR APPROXIMATIONS

Combining (35) and (37) yields the model

Fp (s) = Kφ
N∑6

k=1 Rk

Ip(s) − K2
φ

1∑6
k=1 Rk

gp(s). (38a)

Since x = −gp , this equation may be alternatively expressed
as

Fp (s) = Kφ
N∑6

k=1 Rk

Ip(s) + K2
φ

1∑6
k=1 Rk

X(s). (38b)

C. Simplified Model

The analytical expressions for the reluctances of the six el-
ements (Table I) contain complex functions (i.e., hyperbolic
tangent and modified Bessel functions) that make the result of
(38) difficult to employ in design or tradeoff studies. In [10], the
authors presented a detailed study of various approximations
for Rk . This study demonstrated that each reluctance could be

approximated with high accuracy using the form

R̃k = R0
k + ck

√
s

where R0
k is the static reluctance of element k and ck is an eddy

current coefficient for element k. The analytic expressions for
these parameters are also listed in Table I. Note that both R0

k

and ck are explicit functions of actuator material and geometric
properties.

Using these approximations, the sum of the element reluc-
tances may be approximated as

6∑
k=1

Rk ≈ R0 + c
√

s (39a)
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Fig. 5. Block diagram of a nonlaminated electromagnetic suspension system
operated in current mode.

with

R0 =
6∑

k=1

R0
k c =

6∑
k=1

ck . (39b)

Employing (39a) and (39b), the perturbation force may be
determined as

Fp (s) = Kφ
N

R0 + c
√

s
Ip(s) − K2

φ

1
R0 + c

√
s
gp(s) (40)

or

Fp (s) = Kφ
N

R0 + c
√

s
Ip(s) + K2

φ

1
R0 + c

√
s
X(s). (41)

We note that Kφ is related to the parameters Ki and Kx

introduced in Section II for the case of laminated actuator (i.e.,
no eddy currents)

Ki =
KφN

R0 Kx =
K2

φ

R0 . (42a)

Hence, (41) may be expressed as

Fp (s) = Ki
R0

R0 + c
√

s
Ip(s) + Kx

R0

R0 + c
√

s
X(s) (42b)

which indicates that the effect of eddy currents is to introduce
the transfer function R0

/(
R0 + c

√
s
)

into the relationships
between current/displacement and force. As coefficient c ap-
proaches zero (no eddy currents), the model of the laminated
magnetic suspension system (6) is recovered.

A block diagram model of a nonlaminated actuator operated
in current mode is illustrated in Fig. 5. If parameter c is set
equal to zero in this model, the block diagram for the laminated
system, formed from (5) and (6), will be recovered. The transfer
function from perturbation current to flotor displacement is

X (s)
Ip (s)

=
KiR

0H (s)
c
√

s + R0 − KxR0H (s)
. (43)

This model is a fractional-order system as a fractional-order
power of variable s appears in the transfer function. There has
been considerable interest recently in the stability and control
of such systems; the interested reader is referred to [13].

IV. MODEL OF NONLAMINATED C-CORE ACTUATOR

We now consider a C-core electromagnetic actuator with ge-
ometry shown in Fig. 1. Denote pole face area as A (A = 4ab)
and iron path length as l (l = 2w + 2h).

A procedure similar to that employed for the cylindrical ac-
tuator may be followed in this case. Here, we present only the
resulting simplified model, which is of the same form as (41),
but with coefficients

Kφ =
1
µ0

(
2
A

)
Ni0
R0 (44a)

R0 =
1

µ0A

(
2g0 +

l

µr

)
(44b)

c =
[

l

4 (a + b)
+

b

3a
− 64b2

π5a2 tanh
(πa

2b

)] √
σ

µrµ0
.

(44c)

V. MODEL FOR VOLTAGE-MODE OPERATION

A. Model

Consider a nonlaminated actuator driven by a power amplifier
operated in voltage mode. The voltage across the coil, v, is
related to the coil current and total flux via

v(t) = Ri + N
dφ

dt
(45)

where R is the coil’s resistance. The same relationship holds for
the perturbations

vp(t) = Rip(t) + N
dφp

dt
(t) (46)

where vp = v − v0 . Taking the Laplace transform of (46) yields

Vp(s) = RIp(s) + sNφp(s). (47)

Equations (5), (29), (35), and (47) together form a model of a
nonlaminated actuator operated in voltage mode. Two equivalent
block diagram representations of this model are shown in Fig. 6.

B. Observations

From the block diagrams, two important observations can be
made regarding the input–output behavior of a nonlaminated
actuator operated in voltage mode. First, for any operating point
(i.e., g0 , i0), the effect of eddy currents on the frequency re-
sponse of the transfer functions Fp(s)/Vp(s) and X(s)/Vp(s)
occurs only in a middle band of frequencies. This observa-
tion can be seen easily from Fig. 6(b). The inner loop transfer
function is

N

N 2s + cR
√

s + R0R
(48)

which is the sole element containing the eddy current coef-
ficient c. The manner in which coefficient c enters into this
transfer function indicates that the eddy current contribution to
the dynamics will only be dominant in the frequency (ω) range

R0

c
<<

√
ω <<

cR
N 2 . (49)

Our second observation considers the range of nominal gaps
g0 for which eddy currents will impact the frequency response
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Fig. 6. Two equivalent block diagrams of a nonlaminated actuator operated in
voltage mode.

Fp(s)/Vp(s). We will show that such an effect will not occur
when the gap is too large. Clearly, from (49), if the static reluc-
tance of the flux path satisfies the condition

R0 ≥ c2R
N 2

then the effect of eddy currents on the frequency response will
be negligible. Since the right-hand side of the inequality is inde-
pendent of nominal gap g0 and the left-hand side is affine in this
quantity, this condition will be satisfied when the gap is suffi-
ciently large. Hence, the effect of eddy currents on the frequency
response will be minimal for actuators with large nominal gaps.

Interestingly, the effect of eddy currents may also be negli-
gible in certain cases when the nominal gap g0 is quite small.
For this to occur, the actuator must have its iron path reluctance
much smaller than that of the small air gap. Since Kφ ∝ 1

/
R0 ,

Kφ will be large in this case. Let us consider the implications
of large values of Kφ on the frequency response of transfer
function Fp(s)/Vp(s). Simple algebra yields

Fp(s)
Vp(s)

=
NKφ

N 2s + Rc
√

s + RR0 − RK2
φH (s)

. (50)

If the flotor is not constrained by any flexure, H(s) will be a
type-2 system. In this case, the term RK2

φH (s) will dominate
Rc

√
s in the denominator over a low-frequency range. If Kφ is

sufficiently large, this range may extend up to the frequencies
where the term N 2s dominates Rc

√
s. In this case, the effect

of eddy currents upon the frequency response will be minimal.
Thus, in some actuators with small air gaps, the effect of eddy
currents on the frequency response may be minor. Of course, the
reader should note that if the air gap is too small, the assump-
tions regarding flux flow and distribution that were employed in
developing the model (50) will be violated.

Fig. 7. Experiment for investigating nonlaminated electromagnetic actuation.

TABLE II
PROPERTIES OF NONLAMINATED ACTUATOR (SEE FIG. 3 FOR GEOMETRY)

We now contrast these observations made for voltage-mode
operation with the behavior for current-mode operation. The
transfer function of interest in that case is

Fp (s)
Ip (s)

=
KiR

0

c
√

s + R0 − KxR0H (s)
. (51)

Since R0 − KxR0H (s) will dominate c
√

s over low frequen-
cies, the effect of eddy currents on the plant’s dynamics will
appear primarily at higher frequencies. Furthermore, the effect
will be apparent at all values of nominal gap.

VI. NONLAMINATED ACTUATOR EXPERIMENT

A. Setup

A labeled photograph of the experimental system is pre-
sented in Fig. 7. A stainless steel beam (175 mm × 37.5 mm ×
25 mm, 1.49 kg), supported by a compliant aluminum flexure
(3.23 N/mm), is constrained to 1-DOF translation. A nonlami-
nated magnetic actuator and an electrodynamic shaker are lo-
cated on opposite ends of the beam. The motion of the beam can
be measured with both a noncontact Bentley 7200 displacement
sensor and a PCB Model 352C65 ICP accelerometer.

The flotor of the nonlaminated magnetic actuator is attached
to the beam and the stator is attached to an actuator stand,
which is bolted to a steel base plate. The flotor and the stator
are machined from solid pieces of Carpenter’s Hyperm 49 mag-
netic alloy (dry hydrogen annealed). To investigate the magnetic
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Fig. 8. Frequency response of nonlaminated experiment, X (s)/Ip (s), and model, with and without eddy current effects.

properties of this material, a Rowland ring test was conducted on
a test sample. This test indicated a relative permeability of 9000
and a coercive force of 0.1 Oe. The flotor and stator dimensions
and properties are summarized in Table II. The nonlaminated
actuator was powered by a Krohn-Hite 7500 linear power am-
plifier and the actuator coil current was measured by a calibrated
LEM HY10-P current transducer. Since the current-mode and
voltage-mode models differ only in whether Faraday’s law (45)
is included in the model description, only current-mode experi-
mental results are presented.

The shaker employed is a Labworks ET-132-2, a linear
Lorentz actuator, powered by Labworks PA-138-1 linear am-
plifier. The shaker is attached to the beam and is bolted to the
shaker base. Both the base plate and shaker base are attached
to a milling machine bed for a foundation. Frequency responses
were measured via a HP 3566A PC spectrum/network analyzer.

B. Modeling

The mechanical subsystem of the experiment (beam, flotor,
and flexures) may be modeled with the transfer function

H (s) =
1

ms2 + cm s + Km
(52)

where m is the effective mass, and cm and Km are the damp-
ing and stiffness coefficients provided to the mechanical system

by the flexure and shaker armature. With this model, the trans-
fer function between current and displacement, (43), may be
simplified as (53), shown at the bottom of the page

Calibration tests were conducted to determine all the param-
eters with the exception of that associated with eddy current
effect c.

Flexure stiffness was determined by applying known forces to
the beam via the calibrated shaker and measuring the resulting
displacement using the position sensor (Km = 34924N/m).
The damping of the mechanical subsystem was determined by
sine-sweep testing with the shaker as the excitation source and
subsequent parameter identification (cm = 20.014 N·s/m). The
effective mass of the mechanical subsystem was 2.205 kg.

The actuator parameter Kx was found via the following pro-
cess: 1) set the nominal current i0 and gap g0 , and record the
initial position of the beam; 2) using the shaker, apply forces
so as to pull the flotor away from the nonlaminated stator and
increase the air gap length approximately 1.25 µm (0.005 in);
3) decrease the current applied to the shaker in a series of small
steps until the air gap length is approximately 1.25 µm smaller
than the nominal value g0 , and record the shaker current and
beam position at each step. The data obtained by this process
indicate the relationship between the attractive force generated
by the nonlaminated actuator and the air gap length, as de-
scribed by (1). These data are curve-fitted with the function
f = υg

/
g2 to determine parameter υg . Evaluating df/dg|g=g0

X (s)
Ip (s)

=
KiR

0{
cms5/2 + R0ms2 + ccm s3/2 + R0cm s + cKm s1/2 + R0 (Km − Kx)

} (53)
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Fig. 9. Frequency response of experiment, A (s) /Ip (s), and theoretical
model, with and without eddy currents.

then yields Kx . With g0 = 510.5 µm (0.0201 in) and i0 =
0.15 A, the calibration test yields Kx = 5478N/m. Using a flux
leakage factor of 0.60 obtained from finite-element analysis, a
theoretical value of Kx was calculated to be Kx = 5339N/m,
which is quite close to the experimental value.

The actuator current gain Ki was found by the following pro-
cess: 1) set the nominal gap g0 and record the initial position of
the beam; 2) apply a constant current to the nonlaminated actu-
ator so as to cause a displacement of the beam; and 3) increase
the shaker armature current until the beam is brought back to
its original position, and record the shaker and nonlaminated
actuator currents. Using a range of values for the nonlaminated
actuator current in this procedure will specify the relationship
between attractive force generated by and current applied to

the nonlaminated actuator, as described by (1). Fitting the data
with a function of the form f = υi i2 and evaluating df/di|i=i0

yields the actuator gain Ki . With g0 = 510.5 µm and i0 =
0.15 A, the calibration test yields Ki = 18.67 N/A. The theo-
retical value of Ki calculated with a flux leakage factor of 0.60
is Ki = 18.38 A/m.

Substitution of the nonlaminated actuator’s material and ge-
ometric properties into (39b) and Table I yields a theoreti-
cal value (subscript T) for the eddy current coefficient: cT =
14710 A/Wb.

C. Experimental Results

Fig. 8 presents a comparison of experimental data obtained
by sine-sweep testing using the nonlaminated actuator and
the calculated frequency responses of plant transfer function
X(s)/Ip(s) (53) using c = cT and c = 0 (no eddy currents).
(The shaker was connected during the test as it is part of the
identified mechanical subsystem; it was not activated, however.)
The results demonstrate that the analytic model presented accu-
rately predicts the effects of eddy currents upon the dynamics
of nonlaminated magnetic actuators. For better comparison at
high frequencies, the frequency response was also determined
via sine-sweep with the beam accelerometer employed as the
output transducer. The theoretical model for this input–output
pair is (54), shown at the bottom of the page, where A(s) is the
Laplace transform of the acceleration signal. The experimental
data are shown in Fig. 9 along with theoretical curves obtained
using c = cT and c = 0. The theoretical prediction closely fol-
lows the experimental data. Note that the magnitude at high
frequency is attenuating at a rate of 10 dB per decade and the
phase is asymptotically approaching −45◦. These results are
strongly indicative of the fractional order of the system. Both
phenomena are predicted by the model (54) whose relative de-
gree is 1/2.

VII. CONCLUSION

Two outstanding issues regarding modeling of these nonlam-
inated magnetic actuators were resolved in this study. First,
the effect that continuously varying flotor motion has upon the
force applied to the flotor was derived from first principles.
Second, the relationship between electromagnet coil voltage
and the force induced upon the flotor was resolved. Several
key insights were provided regarding the range of air gaps and
excitation frequencies that would show the most significant ef-
fects of eddy currents. The dynamical model presented is an
explicit function of the material and geometric properties of
the nonlaminated actuator. As a result, the model is suitable
for optimization and tradeoff studies. Experimental results were
provided that show close agreement with the theory presented.

A (s)
Ip (s)

=
KiR

0s2{
cms5/2 + R0ms2 + ccm s3/2 + R0cm s + cKm s1/2 + R0 (Km − Kx)

} (54)
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