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Effect of Magnetic Hysteresis on Rotational Losses
in Heteropolar Magnetic Bearings

David C. Meeker, Member, IEEE, Alexei V. Filatov, Associate Member, IEEE, and Eric H. Maslen, Member, IEEE

Abstract—This paper extends a method for predicting rotational
losses for laminated rotors of heteropolar magnetic bearings by
using an eddy-current model to include the effect of magnetic hys-
teresis in the rotor material. It compares the modeling results to the
experimental data that were used earlier to assess the loss model
neglecting hysteresis. The correction to the total electromagnetic
loss in the rotor due to the hysteresis is significant at rotational
speeds below 6000 revolutions per minute (RPM), where the model
including hysteresis effects provides much better agreement with
existing experimental data.

Index Terms—Eddy currents, magnetic bearings, magnetic hys-
teresis, rotational loss.

NOMENCLATURE

1th unit vector.

Magnetic field density, tesla.

ith harmonic component of B.

Average +th harmonic component of B.

Journal lamination thickness, meters.

Magnetic field strength, ampere/meter.

1th harmonic component of H.

Complex conjugate of h;.

ith harmonic component of H, evaluated at insu-
lating boundaries.

Harmonic index, nondim integer.

Power dissipated, watts.

nth harmonic contribution to power loss, P.

nth harmonic contribution to power loss due to
hysteresis.

Power density, watts/m®.

Average power density, watts/m”.

Pn nth harmonic contribution to power density,
watts/m®.

nth harmonic contribution to power density due to
hysteresis.

r Radial position in the journal, meters.

T Inner radius of the journal, meters.

To Outer radius of the journal, meters.

T Torque, newton-meters.

&

FEEFEIRTTW®
s

LEE

Pn,hyst

STl

Pn hyst

Manuscript received December 6, 2002; revised April 26, 2004. This work
was supported by ABB Corporate Research, Ltd.

D. C. Meeker is with Foster-Miller Inc., Waltham, MA 02154 USA (e-mail:
dmeeker @ieee.org).

A. V. Filatov is with Calnetix Inc., Cerritos, CA 90703 USA (e-mail:
afilatov @calnetix.com).

E. H. Maslen is with the Department of Mechanical and Aerospace En-
gineering, University of Virginia, Charlottesville, VA 22904 USA (e-mail:
ehm7s@virginia.edu).

Digital Object Identifier 10.1109/TMAG.2004.831664

T, nth harmonic component of the torque.

w Energy density, joules/m®.

z Axial position along the journal, meters.

@ Real part of complex inverse skin depth, m~?!.

16} Imaginary part of complex inverse skin depth, m~?!.
i Magnetic permeability, tesla meter/ampere.

Lo Magnetic permeability of a vacuum, 47 x 10~7 T
m/A.

b Complex permeability, models hysteresis.

L, Harmonic complex permeability.

Du Phase angle associated with hysteresis model.

o Electrical conductivity of journal laminations,
siemens/meter.

0 Angular position around the journal, radians.

Q Magnetic scalar potential, amperes.

Q, nth harmonic of the magnetic scalar potential.

w Rotational rate of journal, rad/s.

1. INTRODUCTION

N IMPORTANT advantage of magnetic bearings is their
potential for reduced rotational losses relative to rolling
element and fluid film bearings. To realize this potential, it is
important to have a reasonably accurate method of predicting
the rotating losses, both to quantify the improvement in design
studies and to account for the loss in the final design. In the
absence of a mechanical contact, the two primary sources of
rotational loss in magnetic bearings are windage and electro-
magnetic losses. The latter include resistive power losses caused
by eddy currents and hysteresis losses. To reduce electromag-
netic losses, the rotors of magnetic bearings are typically lami-
nated. This paper deals with modeling both electromagnetic loss
mechanisms in laminated rotors of a heteropolar radial bearings,
whose magnetic flux paths are predominantly two-dimensional
(2-D) (planar).
Interest in losses induced by rotation of the journal through
a nonuniform magnetic field has been strong since magnetic
bearings became commercially significant. Experimental mea-
surement of the drag torque (here, primarily due to magnetic
hysteresis) was reported in 1979 [1]. A study in 1983 [2] estab-
lished the first strong analytic model for losses due to eddy cur-
rents. A method of analyzing eddy-current effects on the attrac-
tive force and counter torque was formulated in 1983 [2]. The
method assumed a solid rotor (producing impractically high ro-
tational losses) and neglected the hysteresis effects. In 1992 [3],
the relative effect of pole sequencing was studied, revealing rela-
tively little effect and suggesting that the prior assumption that a
NSSNNSS. . . orientation was important to minimizing rotating
losses was incorrect. A similar experimental study in 1996 [4]
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revealed similar results using a rather novel experimental tech-
nique. Further experimental results were published in 1998 [5].
A modeling study published in 2002 [6] examined the effect of
pole count and pole sequencing, producing analytic relations of
potential value in design studies. An important point about the
analytic studies of [3], [6] is that they only account for eddy-cur-
rent effects and do not consider the effects of hysteresis. Exam-
ination of the experimental data of [5] reveals a likely effect of
hysteresis and, indeed, that study included a very approximate
hysteresis effect in modeling the data.

Complementary to the work of Kasarda [5], two of the au-
thors [7] developed a method to predict rotational losses for lam-
inated rotors of heteropolar magnetic bearings using a thin-plate
eddy-current model. In that model, the effects of magnetic hys-
teresis were neglected. It was suggested that hysteresis effects
might be included by introducing a complex-valued magnetic
permeability. This model assumes that the hysteresis introduces
a constant phase lag between B and H. The model implies an el-
liptical B—H loop, which only approximately captures the hys-
teresis phenomenon. A more detailed description of this hys-
teresis model can be found in [8]. Even though this approximate
hysteresis model is rather crude (i.e., ignores saturation and
magnetic dynamics effects as well as the difference between the
minor and major hysteresis loops), it produces a model which
exhibits much better agreement with experimental data at low
speeds than the model without any approximation for hysteresis.

II. HYSTERESIS MODEL

A very simple model is employed to incorporate the effects
of the hysteresis. In this model, described by Stoll [8], the hys-
teresis introduces a phase difference between sinusoidal B and
H: B lags H by an angle ¢,, denoted the “hysteresis angle.” The
harmonics caused by saturation are ignored, and the hysteresis
loop becomes an ellipse with the major axis making an angle of
tan~! ;1 with the H axis (see Fig. 1). A complex permeability
due to hysteresis can be defined through

B=ppH: = pe /% ()

The dominant models in the simulation of hysteresis phe-
nomena are due to Preisach [9] and Jiles—Atherton [10]. Both
models require a time-transient simulation to obtain loss esti-
mates. Such a procedure is very time consuming and produces
far more detail than is needed in the steady-state condition ex-
plored here.

For steady-state loss situations, a nonlinear complex perme-
ability approach has been explored to estimate hysteresis loss
with a greatly reduced computational effort [11]. Generally,
good agreement with time-stepping models has been noted,
and recent work [11] has focused on deriving a complex-valued
B-H curve directly from a Preisach model.

The present work additionally assumes that complex perme-
ability is independent of amplitude. This assumption allows for
the inclusion of hysteresis effects while maintaining a descrip-
tion of the eddy currents and hysteresis in terms of linear partial
differential equations, greatly simplifying the calculations and
allowing for analytical solutions. Because the magnetic bear-
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Fig. 1. Approximation of a hysteresis loop.
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Fig. 2. “Unrolled” heteropolar bearing.

ings are nominally operated at a bias point well below saturation
(typically on the order of 0.6-0.8 T), it is reasonable to assume
that the material exhibits negligible saturation so that actual hys-
teresis loops exhibited by the iron are substantially elliptical.

III. MODEL DEVELOPMENT

The development proceeds in a way which is somewhat sim-
ilar to the development in [7]. To simplify the analysis, it is as-
sumed that the journal of a typical heteropolar magnetic bearing
can be “unrolled” into a periodic sheet, as pictured in Fig. 2.

Since the rotor is laminated, a thin-plate model can be as-
sumed in which the  and # second-order derivative terms in the
governing differential equations are so insignificant compared
to the z component that they can be neglected altogether. Ap-
plying this thin-plate assumption yields a simplified eddy-cur-
rent model driven by journal motion [7]

0’H 0JH

FE T 2)

in which w is the rotational speed of the journal and jp and
o are the permeability and conductivity of the rotor material,
respectively.

Since the unrolled domain is 27 periodic in the 6 coordinate,
the solution for B is expected to consist of harmonics in §. A
phasor representation can be adopted where H is defined as [8]

H =Re (Z hnej"9> 3)
n=0

in which h,, is a complex vector denoting the magnitude and
phase of the nth harmonic component of H. Since the system is
linear, each harmonic can be considered separately and the re-
sults for all harmonics may be superimposed to yield a solution
for H.
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Substituting the phasor representation for H into (2) yields

d*h,,
dz?
In the phasor representation, the field distribution for each har-
monic is governed by an ordinary differential equation in z, the
coordinate in the plate thickness direction.

With the equations in the form of (4), the complex perme-
ability model of hysteresis can be inserted. The hysteresis model
is included simply by replacing permeability p with complex-
valued permeability, ;. The differential equation describing
the field in the laminations including hysteresis effects is

d*h,,
dz?
Equation (5) can be solved subject to the boundary condition

h, = h,,, at the insulation between laminations: at both z =
—d/2 and z = d/2. The resulting distribution of h,, across the

lamination is
cosh ((a + 70)z)
hn - hn.o 6
<cosh ((a—l—jﬂ)%)) ' ©

where d represents the lamination thickness and « and J are
defined by

= jnwoph,,. “4)

= jnwo pphy ®)

a+jf =/ jnwop- )

If h,, is averaged across the thickness of the lamination and
multiplied by 1, to obtain the average flux density in the lami-
nation, the result can be written as

b, = p,hy, (8)

where

tanh (\/jnwcruh%)
Vinwopn 4

For purposes of numerical evaluation and later development in
this paper, permeability p,, can be separated explicitly into real
and imaginary parts as

asin(df) + B sinh(da)
daf (cos(df) + cosh(da))

Bsin(df) — asinh(da)
daf (cos(df) + cosh(da))”

The solution for H on the face of each lamination must then
be related to the solution on the surface of the rotor. Since the
axial current density normal is zero at the lamination interface,
the 2-D magnetic field distribution in the plane of the lamination
interface is curl-free and can be described by a potential function
). The field intensity at the lamination interface is defined in
terms of the magnetic scalar potential € as

(€))

Hn = Re(lth)

+jRe(pn) (10)

H,=-VQ an
and €2 must obey the partial differential equation
2?0 1 9%*Q
=0 (12)

o Tz T
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For each individual harmonic

2 2
8Qn_<£) Q, = 0.

or? To

13)

Equation (13) can be solved under the boundary condition at the
inner radius of the journal

o,
or

It can be assumed that the flux in the air gap between the stator
inner surface and the rotor outer surface is purely two-dimen-
sional. However, the solution in the lamination is a function of
z, as can be seen in (6). To accommodate this discrepancy, it is
assumed that a transition between the 2-D solution in the gap
and the fully developed profile described by (6) takes place in
a very thin skin region near the surface of the rotor. With these
assumptions and enforcing the conservation of the flux passing
normal to the rotor surface and the continuity of the tangential
component of H, it was found in [7] that the magnetic potential
describing the field in the air gap is equal to {2 and has to sat-
isfy the following mixed boundary condition on the boundary
between the journal iron and the air in the gap:

o, o [T n
= — — h — °
or o <To>tan <To(r

The solution for the magnetic field in the bearing can then be
found numerically as described in [7], imposing boundary con-
dition (15) on the interface between the air and the rotor, but
without having to mesh and solve explicitly within the rotor.

=0 at

(14)

rT=T7;.

- m)) Q.. (15)

IV. ToTAL Loss COMPUTATION

Perhaps the simplest way to derive rotating losses from a field
solution is to obtain the torque on the rotor via a stress tensor in-
tegration along a closed path through the air encircling the rotor.
The computed torque can then be multiplied by the rotational
speed to obtain power loss.

The approach taken here is to consider each harmonic of the
field at the rotor’s surface separately and then sum the results to
get the total losses. For the nth harmonic, the amplitude and
phase of the field can be represented by the complex-valued
vector h,, (7,4 ). This vector represents the field intensity on the
air side of the interface between the air and iron journal (i.e., at
T = Tot).

The torque associated with each harmonic per lamination can
be obtained via Maxwell’s stress tensor

T, = (2mrod) X 74 X %Re ((hn|,,o+ cay) (Bl , -a2)>
) (16)
where h,, denotes the complex conjugate of h,,.

The first term in (16) is the surface area of the rotor occupied
by one lamination, the second is the moment arm upon which
the shear on the rotor is acting, and the third term is the average
shear stress on the rotor’s surface due to the nnth harmonic. Note
that no special effort is involved in integrating across the thick-
ness of the lamination, since the field in the air outside the lam-
ination is not a function of z. The amplitude and phase of the
field intensity normal to the surface of the rotor is represented
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by (h, (704 )-a1), and that of the tangential magnetic field inten-
sity by (h,,(r,4) - a2). The normal portion of the field intensity
can be written in terms of the potential by referring to boundary
condition (15) at the rotor’s surface

o0,
hy (ro4) -a1 = _W(To-i-)

__Hn ne
= <To>tanh <TO(TO n)) Qu(re). (A7)

The tangential flux density is obtained via differentiation with
respect to 6

1 09
H-a=———. 18
2 T (18)
However, since the phasor transformation has been taken with
respect to the § coordinate, the differentiation with respect to

is replaced by a multiplication by j n for the nth harmonic

n

b (1) -2 == () 2,0

o

19)

Inserting (17) and (19) into (16) yields an expression for the
torque on one lamination in terms of the potential at the surface
of the rotor

To

T, = —Im(un)wn2dtanh <£(ro — r1)> |Qn(7“0)|2. (20)

To obtain the power dissipated in the rotor by the nth harmonic,
the torque is simply multiplied by the rotational speed

P, = —wIm(p,)mn’dtanh <£(ra — ri)> 10.(r))> . 21
To
To obtain the total motion-induced power loss, the loss contri-
butions from each harmonic are summed

P= i P,.
n=0

(22)

V. HYSTERESIS LOSS

To investigate how much of the loss is due to eddy currents
and how much is due to hysteresis, the imaginary part of 1,
can be broken down into a component due to eddy currents and
a component due to hysteresis. Since the total loss has already
been obtained, it is sufficient to derive just one of the component
losses. Here, the hysteresis component will be addressed.

Hollaus and Biro note in [11] that the hysteresis loss density
for one cycle is

(23)

Wnp hyst = _’/TImOl’h) |hn|2

Since the time required to traverse one complete cycle is
27 /(nw), the time average power loss density due to the
hysteresis is

nw
DPn hyst = _7Im(lth)|hn|2- (24)

Since h,, varies across the thickness of the lamination, no gen-
eral result can be obtained from the point loss expression. How-
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ever, if the average loss over the thickness of the lamination is
computed, the result can be compared to the average total loss
across the thickness of the lamination to produce a useful result.
The average hysteresis loss density across the thickness of the
lamination for the nth harmonic, p, is obtained via the integral

2dz. (25)

n

.\mux
=
IS
N

nw 1
ad) | -
2 m () d

ﬁn,hyst =

Wl

To evaluate the hysteresis power integral, the squared magnitude
of h,, must be evaluated. The inner product of h,, from (6) and
its complex conjugate yields

|h |2 _ <COS(2[37J) + COSh(Zaz)

2
cos(df3) + cosh(da) )|hn,o| . (0

The integral in the expression for hysteresis power loss can then
be evaluated

17 _ asin(df) + Bsinh(da)
d / [z = daf (cos(dp) + cosh(da))

[, o .

27)

Sy

b

If the result of (27) is compared to the complex expansion of .,
in (10), the following simplification can be noted:

(28)

d

2
1 Re(fin)
= | |h,|?dz = h, |2
d/d| Pz = o
-2

so that the average power per unit volume due to hysteresis
losses is

nw Re(pun)
7111’1(/1}1) Re(lflh)

nw
= > tan(d)u)Re(Nn) [hn o |2'

[, o]

ﬁn,hyst = -
(29)

The complex permeability 1, can be viewed as replacing the
lamination with an equivalent purely hysteretic medium with a
homogeneous distribution of flux density across the lamination
thickness. For this equivalent material, (25) can be applied di-
rectly to obtain the average total loss per unit volume (i.e., in-
cluding both hysteresis and eddy-current effects)
nw

iﬁn = _7Inl<ﬂn)|hn,o|2- (30)
The ratio of total losses to hysteresis losses for the nth harmonic
can then be obtained by taking the ratio of (29) to (30)

ﬁn,hyst Re(/in)
LS — _ tan
ﬁn ((:bll) IHI(}II”)

. 31)

VI. COMPARISON WITH EXPERIMENTAL DATA

The results of modeling with the hysteresis taken into account
can now be compared with those obtained without hysteresis [7]
and with the experimental data which were used previously to
validate the model without hysteresis [5], [7]. The experimental
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TABLE 1
HIGH-SPEED L0OSS RIG DIMENSIONS
parameter | dimension
axial length per bearing | 4.4 cm
journal inner radius | 2.54 cm
journal outer radius | 4.55 cm

number of poles | 8
number of turns per pole | 94

pole width | 1.90 cm
lamination thickness [ 0.3564 mm
lamination conductivity | 7.46(106) (Qm)™!
lamination permeability | 3460u,
Experiment /

Model without hysteresis

20r 4
Exp. uncertainty

[,
T

Loss, Watts / Amp?
=

o
T

10000 15000 20000

RPM

5000

Fig. 3. Experimental and predicted (no-hysteresis) rotational losses in the
speed range 1000-24 000 RPM.

measurement of rotational losses was conducted using a test rig
(see [5]) which consisted of a short, thick rotor supported by two
radial magnetic bearings. There was no thrust bearing; reluc-
tance centering due to the radial bearings was sufficient to keep
the rotor centered axially. The rotor was run up to speed using
two induction motors located outboard of either bearing. Once
the desired maximum speed was obtained, these motors were re-
tracted from the shaft so as not to influence the run-down losses.
The relevant dimensions for predicting rotating losses are listed
in Table L.

The electromagnetic component of the rotational loss was ex-
tracted from the run-down tests using the procedure described
in [7] which attempts to distinguish between windage losses and
iron losses: the bulk of available data is for tests performed in air
at atmospheric pressure. As reported earlier, the results of mod-
eling without hysteresis were in fairly good agreement with the
experimental data in the speed range 2500-24 000 revolutions
per minute (RPM), as can be seen in Fig. 3 reproduced from
[7].

The error envelopes in this figure are due to uncertainty in the
measurement of bias current levels for each run-down test. The
two boundaries result from calculations based on the nominally
specified bias currents and based on the current deduced by the
average measured value of flux density in the center of the air
gaps. The solid line is the average of these two results. Overall,
the predicted losses correspond closely to the measured losses.
The model’s predictions are within the bounds of experimental
uncertainty throughout the range of 2500-24 000 RPM. How-
ever, a significant discrepancy is observed at rotational speeds
below 2500 RPM (see Fig. 4).
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Fig.4. Experimental and predicted rotational losses in the speed range 0-2500
RPM.
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Fig. 5. Comparison of the losses calculated using models with and without

hysteresis over speed range 0-30 000 RPM.

If the results of modeling with and without hysteresis are
plotted over the whole range of the speeds used in the exper-
iment (0-30000 RPM), the two graphs can hardly be distin-
guished (Fig. 5). (The hysteresis angle ¢,, was taken to be 20°,
as measured in [7]).

However, if this range is limited to 2500 RPM, the difference
between the graphs becomes apparent (see Fig. 4). The model
including hysteresis effects gives an excellent fit of experimental
data at low speeds, while the model ignoring hysteresis signifi-
cantly underestimates the losses.

The percentage increase of the estimated rotational loss when
the hysteresis is taken into account is shown in Fig. 6. The dif-
ference between two models is significant (above 10%) if the
speed is below 6400 RPM.

At high speeds, the loss calculated with hysteresis is about
the same as without hysteresis. However, this does not imply
that the proportion of the hysteresis loss component in the total
loss is negligible. This can be seen in Fig. 7, which shows that
both the calculated total loss and the hysteresis loss increase
with rotational speed.

The reason for this is that while the hysteresis effects are
causing steadily increasing remagnetization losses, they are also
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Fig. 6. Calculated loss increase with hysteresis (¢, = 20°).
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Fig. 7. Calculated total and hysteresis losses.

modifying the magnetic field distribution so that the resistive
losses are steadily reduced relative to a nonhysteretic model.
Consequently, if the rotational losses with hysteresis were to be
estimated by simply summing the eddy-current loss and the hys-
teresis loss, both calculated using a field distribution obtained
without hysteresis, the resulting estimate would significantly ex-
ceed the actual losses.

VII. CONCLUSION

Although hysteresis is a nonlinear effect, it can be adequately
modeled in the unsaturated operating regime as a simple phase
lag for steady field oscillations. This model permits a linear rep-
resentation, consistent with the remaining linear analysis of the
field including eddy currents. Consequently, it is possible to ob-
tain a tractable, nontransient measure of the combined losses
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due to eddy currents and hysteresis. The resulting model is con-
sistent with existing experimental data and appears to correct the
deficiencies of a nonhysteretic model seen at low speeds while
maintaining its fidelity at high speeds. The resulting model is
computationally convenient (the solution for an eight-pole stator
requires roughly 160 MFLOPS based on a typical solution time
of 10 s on an 866-MHz PC). The only additional fitting pa-
rameter required in implementing this hysteresis model is the
angle ¢,, which can be readily obtained from simple impedance
testing of a core sample, as described in [7].

The real significance of this predictive capability will depend
on the particular application. For systems with relatively high
rotation rates, adding hysteresis effects to the analysis will have
anegligible effect on the predicted losses: certainly less than the
underlying uncertainty of the analysis itself. For systems with
relatively low rotation rates, it is important to include hysteresis
effects in order to obtain good prediction of losses, but the losses
are low enough in this regime that they may be of little practical
interest for most applications. However, in low-speed vacuum
applications where the only mechanism for heat rejection from
the rotor is radiation, these predictions could be crucial to a suc-
cessful design.
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