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Abstract — This paper presents a complete model for
solid cylindrical magnetic actuators. The half-order
model shows the eddy current effects on both the
current stiffnress and the displacement stiffness.
Experiments conducted demonstrate the accuracy of
the model.

Index Terms — Eddy currents, displacement stiffness
and current stiffness

|. INTRODUCTION

In practice and in the literature, a magnetic levitation
system operated in current mode is usually modelled by
the block diagram shown in Fig. 1,

16) K F(s) Structure TF x@) o
: G(s) o

K. |l

X

Fig. 1: Block Diagram for a Magnetic Actuator Operated in Current
Model
In Fig. 1, the static gains K; and K, are generally called

current stiffness and displacement stiffness in literature
respectively, and are define as
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This model is accurate only for laminated magnetic
actuators where eddy currents may be ignored. The
analytic results obtained in [1, 2] clearly demonstrate the
effect of eddy currents on current-force relationship, when
a solid actuator is employed.

In this paper, relation between displacement and
mechanical force for solid cylindrical actuators of the
geometry shown in Fig. 2, which is also the one used in
[1], will be studied with eddy currents being taken into
consideration.

1. EFFECT OF CHANGING AIR GAP ON MECHANICAL FORCE
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Fig. 2: Exploded View of A Solid Cylindrical Actuator

Suppose that the bias current I, and the nominal air gap
length g, have been chosen for the solid cylindrical
actuator. When there is a perturbation g, to the nominal

air gap, the flux inside the actuator will consist of two
parts, the bias flux and the perturbation flux. The bias flux
distribution will be the same as that examined in [1] when
the frequency was zero, and the perturbation flux will be
similar to that considered in [1] for the varying field. By
superposition, the magnetic circuit approach employed in
[1] may be used to develop a model for the relation
between displacement and mechanical force, as will be
demonstrated herein. In this paper, the actuator geometry
division presented in [1] will be adopted and the effective
reluctance of each element of the geometry developed in
[1] will be used.

Select a small annular section of inner air gap at r. At
any time t, the magnetomotive forces on the surfaces of the
flotor and the stator consist of bias and perturbation terms:
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Fig. 3: Magnetomotive Force across a Small Annular Section of Inner Air
Gap

fa(r, t) = ff?(r)+ fo(r, t) (29)
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Due to the perturbation of air gap length, the reluctance of
the small annular air gap section may be written as
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Define the nominal reluctance of the gap section as
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Assuming g, (t) is small, the flux passing through R, at
any time t, is

g, (r, )=
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Substituting (2) into (4a) yields
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Assuming the perturbation terms are small and then
neglecting the higher order term, one may separate the flux
into a time-invariant (bias) and time-varying (perturbation)
components:
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Assuming a uniform bias flux distribution in the air gaps
yields
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where R® and R? are the static reluctances of the actuator
flux path and Element 1 with fixed air gap g,
respectively. Combining (5) and (6) produces
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Laplace transformation of (7b) yields
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Fig. 4: Reluctance Network for Element 1

Using the reluctance network model of Element 1 shown
in Fig. 4 and conservation of flux, one can obtain
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Due to the symmetry of the reluctance network
Fi(r, s)=FR’(s)-F{(r, s) 9)

Substituting (7c) and (9) into (8) yields
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Taking the limit of (10) as & >0 yields an ordinary
differential equation
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where o} = 2a . From the analysis in [1], the solution to
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The perturbation flux can be obtained by the following
integral
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where R, is the effective reluctance of Element 1 with
nominal air gap g,

Using the same approach employed above, one can
show that for Element 3
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where R, is the effective reluctance of Element 3 with

nominal air gap g, , and F,”(s) is the magnetomotive force
across this element. From [1], we know that for Element i,
i=2,4,5and 6

5,(5) = F(9) (14c)

where R; is the effective reluctance of Element i, F"(s)

is the magnetomotive force across Element i. Therefore,
we have,
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The magnetomotive force across each element consists of a
bias term and a perturbation term,

F(s)= Fib +F"(s) (16)

where the bias terms are constant. According to Ampere’s
law,
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where 1,(s) is  the perturbation current,
I,(s)=L{i(t) - i, . Substituting (15) into (18) yields
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Noting Rf =—"— and R; = , where A and A, are
HoA HoA,

the cross sectional areas of the inner and outer poles
respectively, one can obtain
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From the treatment in [1], the simplified model of (20a) is
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Fig. 5: Directions of the Mechanical Force and Displacement

According to the direction of mechanical force shown Fig.
5 X,=-¢
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From [1], we know that the total mechanical force f(t) is
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where B(t,r) includes bias and perturbation terms.

Therefore, the total mechanical force also consists of bias
and perturbation terms

f(t) =1, +1,(t) 22)

Assuming perturbation flux density is small, we have
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Taking Laplace transform of (23) yields
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where K¢:i(i+iJ~N—IO”, and we notice that K,
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also appears in (20). Combining (20c) and (24) yields
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for the solid actuator. Equation (25b) shows that in a solid
magnetic actuator, due to the appearance of eddy currents,
both current stiffness and displacement stiffness are
attenuated at the rate of a half-order of frequency. From
(25b), one can develop a block diagram representation for
a solid magnetic actuator operated in current mode, as
shown in Fig. 6
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Fig. 6: Block Diagram for a Solid Actuator Operated in the Current Mode

111. EXPERIMENT

In order to examine the accuracy of the analytic model
developed in section 2 and to investigate the performance

of robust controllers that will be designed in a future
research effort, a test rig, shown in Fig. 7, was carefully
designed, built and calibrated.

Fig. 7: The Test Rig

The primary objective in experiment design was to
develop a system that could be easily modelled from a
mechanical viewpoint, yet still encompasses all the
important characteristics of magnetic levitation systems
using solid actuators.

In the test rig, a beam, supported by a compliant
aluminium flexure, is allowed one degree of freedom
translation. A solid magnetic actuator and a shaker, located
on each end of the beam, provide control forces. The flotor
and the stator of the magnetic actuator are attached to the
beam and the actuator stand respectively by adapters. The
actuator stand is bolted down to a steel base plate. The
shaker is attached to the beam by two C shaped adapters,
and is bolted down to the shaker base. Both the base plate
and shaker base are attached to a surplus milling machine
bed for a foundation.

The rigorous model (25b) for cylindrical actuators shows
that the eddy current effects on actuator dynamics may be
represented by the coefficient, ¢, of the half-order term. It
is desirable to examine how the analytic model fares in
comparison to experimental results. Towards this end, a
swept sine test was conducted to determine experimentally
the frequency response of the transfer function, X /1,

see Fig. 8
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Fig. 8: A Swept Sine Test Resultof X /1



According to the block diagram of the experimental test rig
shown in Fig. 9,

X _
Ip
R°K;
cms®? + R°ms? + cc,s¥2 + R%,s + cKs"? + R%(K — K, )
(26)

I, X
N S N N

‘ cs + R° ™ ms® +¢,s+K =

K, |-

Fig. 9: Block Diagram of the Experimental Test Rig

We conducted calibration tests to determine all the
parameters within this model with the exception of the
eddy current effect coefficient c. Then, an estimate of ¢ can
be obtained using the frequency domain identification
approach presented in [3]. Table 1 lists the calibration
values of all the parameters in (26) with the exception of
eddy current coefficient c.

Table 1 Parameter in (26) Except ¢

m | 2205kg

€ | 20.014Ns/m (from Swept Sine Test of the Structure)

K | 34924N/m

K. | sa78nvm

K, | 18.670v4

& | 20.1mil

Hr | 9000 (from Rowland Ring Test)

Employing the frequency domain identification
approach in [3] on (26) with the calibrated parameters in
Table 1 and the experimental frequency response data from
1 to 300hz, the identified value of the eddy current
coefficient is ¢, =12878 ampere/webber (Superscript |

indicates the identified value). From [1], we have a

theoretical value c; =14710ampere/webber . Fig. 10

shows the frequency response of the transfer function
0

= with c=c, and with c=c; . Fig. 11 and 12
CV's +

presents a comparison among the experimental data of
X,(s)/1,(s) , theoretical values calculated from (26) with
c=c,, with c=c¢;, and with c=0. Figure 10-12 show
that the eddy current effect predicted by the analytic model
from (25b) is very close to what was observed from

experimental tests, thus indicating the accuracy of the
analytic model.

For further model comparison, a swept sine test was
conducted to obtain the frequency response of A(s)/1,(s),

where A(s) is acceleration of the beam. Theoretical values
calculated with c=c, , with c=c; and with c¢=0 for
A(s)/1,(s) were compared with the experimental data in

Fig. 13 and 14. This again demonstrates the accuracy of
the analytic model.
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Fig. 10: Frequency Response of R’ /(C S+ RO) with C=C, and
with ¢ =¢;
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Fig. 12: Zoom-in View on the Magnitude plot in Fig. 11
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IV. CONCLUSION

In this paper, the effect of changing air gap length on
mechanical force produced by a solid cylindrical magnetic
actuator was studied by adopting the magnetic field
analysis approach developed in [1]. A complete analytic
model, which shows the effect of eddy currents on both the
displacement stiffness and the current stiffness, was
derived. Experiments conducted prove the accuracy of the
model.
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