Calnetix has created a detailed white paper explaining how magnetic bearings work. To download a copy, click here.

Excerpt from Calnetix’s white paper entitled, “General Explanation of How Magnetic Bearings Work”

 

Magnetic Bearings are devices used to support (levitate) objects using magnetic forces. Some magnetic bearings provide a full non-contact support of an object, whereas others provide only a partial support working together with more conventional mechanical bearings.

While a wide variety of magnetic bearings have been developed, only one type has been widely accepted in the industry so far - Active Magnetic Bearings (AMBs). This is because an active magnetic bearing can exert higher-density forces on surfaces of supported objects than any other type of magnetic bearing. They can also operate in a wide range of environments and their properties can be made highly configurable through software parameters. Ongoing dramatic improvements in Digital Signal Processors (DSP) – faster performance, integration of important peripheral features, and cost reductions – have further boosted commercial attractiveness of active magnetic bearings.

The basic operating principle of an active magnetic bearing is very simple. A ferrous object is known to be attracted to a permanent magnet or an electromagnet (an electrical coil wound around a ferrous core). For example, Figure 1 shows a ferrous object which will be attracted to an electromagnet located next to it whenever the coil is energized with a current. Note that the force between an electromagnet and a ferrous object is always attractive – it cannot be repulsive.

 

 

 

The pulling force exerted by the electromagnet on the object depends on two parameters:

a.) Current I in the electromagnet, and
b.) Distance between the object and the electromagnet g, also represented by the object position Z.